11,674 research outputs found

    Statefinder hierarchy exploration of the extended Ricci dark energy

    Full text link
    We apply the statefinder hierarchy plus the fractional growth parameter to explore the extended Ricci dark energy (ERDE) model, in which there are two independent coefficients α\alpha and β\beta. By adjusting them, we plot evolution trajectories of some typical parameters, including Hubble expansion rate EE, deceleration parameter qq, the third and fourth order hierarchy S3(1)S_3^{(1)} and S4(1)S_4^{(1)} and fractional growth parameter ϵ\epsilon, respectively, as well as several combinations of them. For the case of variable α\alpha and constant β\beta, in the low-redshift region the evolution trajectories of EE are in high degeneracy and that of qq separate somewhat. However, the Λ\LambdaCDM model is confounded with ERDE in both of these two cases. S3(1)S_3^{(1)} and S4(1)S_4^{(1)}, especially the former, perform much better. They can differentiate well only varieties of cases within ERDE except Λ\LambdaCDM in the low-redshift region. For high-redshift region, combinations {Sn(1),ϵ}\{S_n^{(1)},\epsilon\} can break the degeneracy. Both of {S3(1),ϵ}\{S_3^{(1)},\epsilon\} and {S4(1),ϵ}\{S_4^{(1)},\epsilon\} have the ability to discriminate ERDE with α=1\alpha=1 from Λ\LambdaCDM, of which the degeneracy cannot be broken by all the before-mentioned parameters. For the case of variable β\beta and constant α\alpha, S3(1)(z)S_3^{(1)}(z) and S4(1)(z)S_4^{(1)}(z) can only discriminate ERDE from Λ\LambdaCDM. Nothing but pairs {S3(1),ϵ}\{S_3^{(1)},\epsilon\} and {S4(1),ϵ}\{S_4^{(1)},\epsilon\} can discriminate not only within ERDE but also ERDE from Λ\LambdaCDM. Finally we find that S3(1)S_3^{(1)} is surprisingly a better choice to discriminate within ERDE itself, and ERDE from Λ\LambdaCDM as well, rather than S4(1)S_4^{(1)}.Comment: 8 pages, 14 figures; published versio

    Measuring the degree of unitarity for any quantum process

    Full text link
    Quantum processes can be divided into two categories: unitary and non-unitary ones. For a given quantum process, we can define a \textit{degree of the unitarity (DU)} of this process to be the fidelity between it and its closest unitary one. The DU, as an intrinsic property of a given quantum process, is able to quantify the distance between the process and the group of unitary ones, and is closely related to the noise of this quantum process. We derive analytical results of DU for qubit unital channels, and obtain the lower and upper bounds in general. The lower bound is tight for most of quantum processes, and is particularly tight when the corresponding DU is sufficiently large. The upper bound is found to be an indicator for the tightness of the lower bound. Moreover, we study the distribution of DU in random quantum processes with different environments. In particular, The relationship between the DU of any quantum process and the non-markovian behavior of it is also addressed.Comment: 7 pages, 2 figure

    Serrin Type Criterion for the Three-Dimensional Viscous Compressible Flows

    Full text link
    We extend the well-known Serrin's blowup criterion for the three-dimensional (3D) incompressible Navier-Stokes equations to the 3D viscous compressible cases. It is shown that for the Cauchy problem of the 3D compressible Navier-Stokes system in the whole space, the strong or smooth solution exists globally if the velocity satisfies the Serrin's condition and either the supernorm of the density or the L1(0,T;L∞)L^1(0,T;L^\infty)-norm of the divergence of the velocity is bounded. Furthermore, in the case that either the shear viscosity coefficient is suitably large or there is no vacuum, the Serrin's condition on the velocity can be removed in this criteria.Comment: 16 page

    Semi-Supervised Sparse Coding

    Full text link
    Sparse coding approximates the data sample as a sparse linear combination of some basic codewords and uses the sparse codes as new presentations. In this paper, we investigate learning discriminative sparse codes by sparse coding in a semi-supervised manner, where only a few training samples are labeled. By using the manifold structure spanned by the data set of both labeled and unlabeled samples and the constraints provided by the labels of the labeled samples, we learn the variable class labels for all the samples. Furthermore, to improve the discriminative ability of the learned sparse codes, we assume that the class labels could be predicted from the sparse codes directly using a linear classifier. By solving the codebook, sparse codes, class labels and classifier parameters simultaneously in a unified objective function, we develop a semi-supervised sparse coding algorithm. Experiments on two real-world pattern recognition problems demonstrate the advantage of the proposed methods over supervised sparse coding methods on partially labeled data sets

    Global Well-Posedness of Classical Solutions with Large Oscillations and Vacuum to the Three-Dimensional Isentropic Compressible Navier-Stokes Equations

    Full text link
    We establish the global existence and uniqueness of classical solutions to the Cauchy problem for the isentropic compressible Navier-Stokes equations in three spatial dimensions with smooth initial data which are of small energy but possibly large oscillations with constant state as far field which could be either vacuum or non-vacuum. The initial density is allowed to vanish and the spatial measure of the set of vacuum can be arbitrarily large, in particular, the initial density can even have compact support. These results generalize previous results on classical solutions for initial densities being strictly away from vacuum, and are the first for global classical solutions which may have large oscillations and can contain vacuum states.Comment: 30 page
    • …
    corecore